Nitrate-dependent activation of the Dif signaling pathway of Myxococcus xanthus mediated by a NarX-DifA interspecies chimera.

نویسندگان

  • Qian Xu
  • Wesley P Black
  • Scott M Ward
  • Zhaomin Yang
چکیده

Myxococcus xanthus fibril exopolysaccharide (EPS), essential for the social gliding motility and development of this bacterium, is regulated by the Dif chemotaxis-like pathway. DifA, an MCP homolog, is proposed to mediate signal input to the Dif pathway. However, DifA lacks a prominent periplasmic domain, which in classical chemoreceptors is responsible for signal perception and for initiating transmembrane signaling. To investigate the signaling properties of DifA, we constructed a NarX-DifA (NafA) chimera from the sensory module of Escherichia coli NarX and the signaling module of M. xanthus DifA. We report here the first functional chimeric signal transducer constructed using genes from organisms in two different phylogenetic subdivisions. When expressed in M. xanthus, NafA restored fruiting body formation, EPS production, and S-motility to difA mutants in the presence of nitrate. Studies with various double mutants indicate that NafA requires the downstream Dif proteins to function. We propose that signal inputs to the Dif pathway and transmembrane signaling by DifA are essential for the regulation of EPS production in M. xanthus. Despite the apparent structural differences, DifA appears to share similar transmembrane signaling mechanisms with enteric sensor kinases and chemoreceptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of a suppressor mutation that restores Myxococcus xanthus exopolysaccharide production.

Myxococcus xanthus, a Gram-negative soil bacterium, undergoes multicellular development when nutrients become limiting. Aggregation, which is part of the developmental process, requires the surface motility of this organism. One component of M. xanthus motility, the social (S) gliding motility, enables the movement of cells in close physical proximity. Previous studies demonstrated that the cel...

متن کامل

Phosphorylation and dephosphorylation among Dif chemosensory proteins essential for exopolysaccharide regulation in Myxococcus xanthus.

Myxococcus xanthus social gliding motility, which is powered by type IV pili, requires the presence of exopolysaccharides (EPS) on the cell surface. The Dif chemosensory system is essential for the regulation of EPS production. It was demonstrated previously that DifA (methyl-accepting chemotaxis protein [MCP]-like), DifC (CheW-like), and DifE (CheA-like) stimulate whereas DifD (CheY-like) and ...

متن کامل

Demonstration of Interactions among Dif Proteins and the Identification of Kapb as a Regulator of Exopolysaccharide in Myxococcus Xanthus

Myxococcus xanthus Dif proteins are chemotaxis homologues that regulate exopolysaccharide (EPS) biogenesis. Previous genetic studies suggested that Dif protein might interact with one another as do the chemotaxis proteins in enterics. The interactions among Dif proteins were since investigated with the yeast two-hybrid (Y2H) system. The results indicate that DifC interacts with both DifA and Di...

متن کامل

Developments in Defining dif.

The Gram-negative soil bacterium Myxococcus xanthus has a complex life cycle that involves vegetative growth and, when nutrients are limiting, formation of spore-containing fruiting bodies. The progression of the developmental cycle depends in part upon the ability of M. xanthus cells to sense and respond to their environment and to coordinate two different motility systems to achieve directed ...

متن کامل

A CheW homologue is required for Myxococcus xanthus fruiting body development, social gliding motility, and fibril biogenesis.

In bacteria with multiple sets of chemotaxis genes, the deletion of homologous genes or even different genes in the same operon can result in disparate phenotypes. Myxococcus xanthus is a bacterium with multiple sets of chemotaxis genes and/or homologues. It was shown previously that difA and difE, encoding homologues of the methyl-accepting chemoreceptor protein (MCP) and the CheA kinase, resp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 187 18  شماره 

صفحات  -

تاریخ انتشار 2005